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1D to 3D Imaging Methods
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- Gamma ray, x-ray and CT
Gamma vs. x-ray
Gamma log
CT
Note regarding grey-scale images
Uses: description, analysis, assessment
- Beer-Lambert Law
1D + time
Saturation determination
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¥ (Gamma versus x-ray
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- Gamma and x-ray are high energy electromagnetic rays
- No precise distinction between the two

- Gamma generally higher energy, generally more unique spectral signal
- Gamma usually from nuclear decay, x-ray from electron excitation
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Attenuation
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Gamma / x-rays will be slowed (attenuated) as
they pass through and interact with a material

Different materials exhibit different levels of
attenuation

Materials exhibit lower attenuation coefficients
to higher energy rays

Thicker material, will exponentially attenuate
(block) more rays and detected counts is
given by
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1D to 3D Imaging Methods
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Gamma log
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w¥ Core Gamma Ray Logging
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Wellsite and/or Lab
Mainly for core-log depth shifting

Total and spectral gamma
uranium/potassium/thorium ratios
Equipment
conveyor belt (1 ft/min, 18 m/h)
Nal detector (shielded)
analyser system

computer
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& Core Gamma Example
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1D to 3D Imaging Methods
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CT - spatially resolved x-ray measurements
Note regarding grey-scale images
Uses: description, analysis, assessment
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@ CT scanning — grey-scale image settings
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- Hounsfield Unit = measures radiodensity

function of attenuation coefficients HU = 1000 H = Hw
Hw — Ha
_ WL(or WC) = Centre HU setting
Air: HU = -1000 WwWw = Width HU Setting
: — Standard CT setting Core setting
Water: HU =0 WC-1000, WW-4096 WC-2000, WW-400

SOCIETY OF
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@ CT scanning — grey-scale image settings
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Different density profiles will require
different HU image settings

Standard
Equipment
Setting

SCA 2017 — Core Imaging Short Course
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@ CT scanning — grey-scale image settings
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Standard CT equipment setting

WC = 1000 ' |

WW = 4096 3000
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Core density in the middle of the grey-scale
Small variance in observed image
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@ CT scanning — grey-scale image settings
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- SCA 2013-004 recommends Initial assessment using WW=200

Grey-scale optimised from lowest to highest density
l ' l T Variance in observed image - white to black
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Helical CT scan — 3D analysis
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3D scans allow various analytics

- Feature Identification Options

- Each feature is extracted, named,
and analyzed separately. For each
feature, you can specify name,
color, and visibility options.
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Helical CT scan — 3D analysis

Orientation
- Dip

Strike
Image log correlation

L
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Helical CT scan — 3D analysis
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- Virtual Plug Extraction

Assess plug viability before
acquiring
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1D to 3D Imaging Methods
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. Beer-Lambert Law

1D + time (in situ saturation monitoring [ISSM])
Saturation determination

Considerations ' &
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Attenuation — Beer-Lambert Law
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attenuation coefficient (mzlkg)
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In situ saturation monitoring (ISSM)
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For a composite material, total attenuation is the sum of the individual
materials’ attenuation coefficients and the saturation of each material

For core samples
- Core sample maintained in fixed position
- Assume the rock matrix is unchanging
- Changes in attenuation (detected counts) = change in fluid saturation
- Calibration performed Sw = 0, Sw =1 and intermediate values given by:

B In(1) — In(Is,) _ i (I/ISO)
~ In(,) —In(Is,) In (ISW/I )
So

'Y
lsw Is Sw=1, lso IsSw =0 {%l <
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In situ saturation monitoring (ISSM)
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attenuation coefficient (mz/kg)
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attenuation coefficient (mz/kg)
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In situ saturation monitoring (ISSM)

- Method often requires one fluid phase to be
“doped” (x-ray blocker added)
lododecane
IFT reduced (ambient & temperature)
Problems at temperature
Nal
Light degradation
Temperature degradation
CsCl
Can be problematic for clay-rich sample

- “Doping” cannot be used during most
chemical EOR processes
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In situ saturation monitoring (ISSM)
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- Saturation (for steady state relative permeability)
ISSM is the only recommended method

- Alternatives (gravimetric and volumetric) incorporate large error
E.Q.
oll production = 1505 — 1500 =5 m|

- Saturation dependent upon viable calibration
Requires viable cleaning/displacement process
- Assumes core unchanged T

- Assumes no significant movement of the scan location A

Heterogeneities can cause significant error with sub-millimetre shifts %ﬁl%l
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In situ saturation monitoring (ISSM)
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- Recommend saturation verification via some second method, e.g.
Dean-Stark inadvisable due to positional shift

Karl Fischer
Must ensure all water is removed
Possible errors for high water content
Possible errors for high clay content

tracer injection

: : : Sample must be homogeneous
dispersion analysis
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In situ saturation monitoring (ISSM)
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In situ saturation monitoring (ISSM)

ISSM can show potential errors due to lab artefacts

| Lab Average Sw
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Conclusions
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.- X-ray (or gamma) and x-ray computer tomography has been used for
many years and is a verified imaging method that can be used for:

- Reservoir characterisation, goniometry, fracture analysis, sample
assessment and evaluation, sample selection, digital rock properties,
saturation determination, etc.

However, caution must be taken for the assumption that saturation
can be obtained from x-rays alone

Due to doping requirements, it is probably not viable for chemical

EOR, except for very elongated scanning times
E
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