

SCA 2017 – Vienna, Austria

Core Imaging - Short Course Introduction – Why image cores? Jules Reed Lloyd's Register jules.reed@lr.org

Working together for a safer world

- Reservoir Characterisation
 - Description, Lithology, Mineralogy, Flow units, Orientation, net pay
- Sample selection sample heterogeneity
- Program design pitfalls mineralogy and core prep
- Saturation determination (e.g. SS only viable method)
 - Local fluid saturations
 - Fluid dynamics
- Diagnostics (e.g. formation damage)

- Core Photography (White light & UV)
 - High resolution photography
- Microscopy (thin section)
- Scanning Electron Microscopy (plus EDX, EDS)
- Infra-red spectroscopy
- X-ray fluorescence, x-ray diffraction
- Gamma / X-ray / CT
- Magnetic NMR, MRI, magnetic susceptibility

White Light

Confirm lithology Observe HC content (UV) Differentiate pay zones

High res images (1990's) allowed determination of grain and pore sizes

œ

CORE ANALYST

Thin section

 \triangleleft

R

VIENN

SOC

CORE ANALYSTS

Whole Rock XRD

Discrete Kaolinite

Pore-bridging Illite

Whilst TSA & XRD provide content volumes

SEM shows clay location and morphology

Pore lining Chlorite

Pore Filling Smectite

æ

Courtesy QEM-scan

SCA 2017 – Core Imaging Short Course

Courtesy Spectra-map

SO CORE ANALYSTS

æ

- Reservoir Characterisation
 - Description, Lithology, Mineralogy, Flow units, Orientation, net pay
- Sample selection sample heterogeneity
- Program design pitfalls mineralogy and core prep
- Saturation determination (e.g. SS only viable method)
 - Local fluid saturations
 - Fluid dynamics
- Diagnostics (e.g. formation damage)

Shearing during coring

- Essential to understand potential core damage to assess sample selection and evaluate core analysis results
- Limited resolution

Longitudinal Fracturing

- To observe visually difficult lithological features
- To observe features before
 removing core from preservation

- Reservoir Characterisation
 - Description, Lithology, Mineralogy, Flow units, Orientation, net pay
- Sample selection sample heterogeneity
- Program design pitfalls mineralogy and core prep
- Saturation determination (e.g. SS only viable method)
 - Local fluid saturations
 - Fluid dynamics
- Diagnostics (e.g. formation damage)

0048 18KV X3.300 10Hm WD24

- Excess temperatures/evaporative cycles (hot Soxhlet)
 - Dehydrate/collapse smectite, illite, chlorite
- Methanol can weaken hydroxyl groups between clay layers (particularly kaolinite)
 - High rate flush cleaning
 - fines movement (kaolinite, chlorite & illite)
- Chamosite (Fe²⁺-rich chlorite) is oil wet

- Reservoir Characterisation
 - Description, Lithology, Mineralogy, Flow units, Orientation, net pay
- Sample selection sample heterogeneity
- Program design pitfalls mineralogy and core prep
- Saturation determination (e.g. for SS, ISSM only viable method)
 - Local fluid saturations
 - Fluid dynamics
- Diagnostics (e.g. formation damage)

- Geomechanics properties •
- In-situ saturation measurement (ISSM) ^{0.8} Fluid flow 0.6 0.5 0.4 0.3 0.2 •
- Fluid flow •

- Reservoir Characterisation
 - Description, Lithology, Mineralogy, Flow units, Orientation, net pay
- Sample selection sample heterogeneity
- Program design pitfalls mineralogy and core prep
- Saturation determination (e.g. SS only viable method)
 - Local fluid saturations
 - Fluid dynamics
- Diagnostics (e.g. formation damage)

SEM, in particular, can be used to assess cause of formation damage

