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NMR BACKGROUND: SURFACE AND VOLUME DIFFUSION (SINGLE PHASE)
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NMR BACKGROUND: S/V MODEL (FAST DIFFUSION LIMIT)
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WETTABILITY, STEP 1. BIPHASIC S/V MODEL

S w/o surface wetted by water/oil
V w/o volume of water/oil

1 1 S . = . +1020i

T2 T2 Bo V

= + —_
TZBW IOZW V T2 0

W

0

w

Interfacial relaxivity
is negligible

Wefttability short course, SCA symposium 2018



WETTABILITY, STEP 2: NMR INDEX
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FROM THE PRINCIPLE TO THE APPLICATION

@ Distribution of relaxation times due to
® pore sizes
@ oil components for crude oils

@ Need to distinguish water and oil contributions in T, distribution
@ Need the ratio of surface relaxivity of water and oil
® At which saturation should the surfaces be measured ?

- various ways of measurements, protocols or modeling
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EXAMPLE OF THE NMR T, RESPONSE TO WETTABILITY (MODEL)
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Fig. 3—S, =0.5, /,=0.0 (neutral, or intermediate-wet).
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A FEW WAYS OF CALCULATING I\us

@ Brown and Fatt, 1956: effect of wettability on NMR relaxation
@ Howard (1998): detect water shift only and calibrate it

@ Fleury and Deflandre (2003): consider 4 saturation states obtained by
centrifuge

@ Al-Mahrooqi et al. (2006): consider 2 saturation states + modeling

@ Looyestijn and Hofman (2006): perform inverse modeling from distribution
data obtained at one saturation after aging (+ include 100% water and oil
distributions)

@ Other approaches more recently, but using the same principles
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Amott Water Index
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Wetting Index
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Fig. 15—Comparison of wetting index obtained by inversion of
NMR and by standard core analysis, both defined on a [-1,1]
scale for six different fields.

Wefttability short course, SCA symposium 2018



SUMMARY: WETTABILITY FROM T, DISTRIBUTION (WETTED SURFACE)

@ Various ways of calculating wettability indexes based on the same principle
@ Reasonably good relationship with standard methods (USBM - Amott)
@ Attempts to minimize the number of experimental steps

“Ready to use”
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NMR BACKGROUND: T, , T, AND CORRELATION TIME 1, IN LIQUIDS

Correlation time of dipolar interactions: characteristic time for molecular re-orientation
Molecular motions strongly affect T1 and T2
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Interactions E.M. Purcell, R. V. P. Relaxation Effects in Nuclear Magnetic

Resonance Absorption. Phys. Rev. 679-746 (1948).
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NMR BACKGROUND: T; DISPERSION IN POROUS MEDTA
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NMR WETTABILITY BASED ON RESIDENCE TIME

Theory
A=-5 e
- A= ’”shm Dynamics surface affinity
Tm (NMR wetability)
l.m
20 | -,
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FROM THE PRINCIPLE TO THE APPLICATION

@ Measure dispersion curves T,(mg)
@ Need a field cycling instrument
@ Need to separate water and oil contributions

@ Scaling theoretically between 1 and «
Using oil average T,/T,

® Measure T,/T, ratio o
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SUMMARY: WETTABILITY FROM RESIDENCE TIME

@ Affinity parameter linked to the time of residence of a molecule at the solid
surface

@ Need to separate oil and water contributions

@ T,/T, as a proxy seems the most promising solution, especially for logging
application
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WETTABILITY FROM DIELECTRICS - GENERAL

Current density

Electric field
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Conductivity
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Wettability influences the electrical properties of rocks at both low and high frequencies.

1
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Low frequencies (< 100 kHz) wettability mainl
con’rr'olsq’rhe dc e?ec‘rr'ical cgnducTiviTy%f r'oclz.

Governing factor : fortuosity - continuity of
he water phase.

MHz

\ GHz

High frequencies (> 1 MHz) wettability
mainly controls the dielectric permittivity ¢

Governing factor: shape of the water phase
rather than continuity
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DIELECTRIC PERMITTIVITY

@ ¢ is a complex function of frequency and consists
of a real part ¢ and an imaginary part &".

@ The real part decreases monotonically with
increasing frequency. The imaginary part
exhibits peaks at characterisfic frequencies.

® The reciprocal of the frequency at which a peak
in ¢" is observed is called dielectric relaxation
time t.

@ ¢" peaks when the oscillations of the applied
electric field become too fast for the charges to
be able to follow them. Charges tend to N A e
accumulate at interfaces 10 1P 1P 107 16

frequency [ Hz ]
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PRINCIPLE OF DIELECTRIC WETTABILITY TEST

@ Rocks at Swi conditions are modeled as a

O
distribution of water inclusions imbedded in an > J
insulating medium. Each inclusion has a shape ()
factor u. g [

O
0

® 11 is an increasing function of the surface-to- — @ \
volume ratio of the inclusion. A linear relation
between 1 and the relaxation time of the | INSULATING PHASE (MATRIX £ OIL)
inclusion exists (Lysne, 1983). 2 WATER

@ A distribution of water shapes results in a en(u—1)+e
distribution of relaxation times. Water-wet (u)=e5 " # "
rocks have higher x's and longer t's than oil wet Ty

rocks.
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WETTABILITY FROM DIELECTRICS - METHOD

TOR data acquiston .....Oper-ended coexil probe

® s (o) is measured under cleaned conditions and =D - (eamee
re-measured after aging the sample. Water (o JLgengreer) |
saturation must be close to Swi in both I . 19

measurements. Time domain reflectometry is
commonly used to measure ¢(®) in the MHz-GHz
range.

v ringin
_ | f metallic iel
’ : flange SR

Digital Sampling : ieee488 bus Personal
Oscilloscope v : computer
Tektronix 11802 : :

@ The dielectric permittivity g(a)g is expressedin
terms of the u-distribution P(u

Data storage and processing

@ ¢ (w) is inverted to find the P(u) distribution.
Then the two distributions are compared. If oo
they are similar, the rock is considered to be (0) = P(u)du
water-wet. If they are different, there is an T T Y iwt(n)
indication of a non water-wet condition. 1
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EXAMPLE 1 - MIXED-WET SAMPLE

P(u) distribution

aged
cleaned

KN

5 36 2500

Low S/V High S/V inclusions
(large pores) (micropososity)

@ The ageing of the sample reduced
the S/V ratios of the water
contained in the larger pores. The
S/V ratios of water in
microporosity did not change

@ Conclusion: the larger pores
became oil-wet, the micro-pores
stayed water-wet
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EXAMPLE 2 - MIXED-WET SAMPLE

P(u) distribution @ Under cleaned conditions (green curve),
this sample exhibits a monomodal water
aged shape distribution.
cleaned
/\ ® The ageing of the sample generated a low
S/V peak (red). This indicates that part
of the pores became oil-wef.
13 1100
1000
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EXAMPLE 3 - WATER-WET SAMPLES

® All these samples exhibited
monomodal water shape
distributions. Instead of showing the
u-distributions, we only present
their peak values (green and red
bars)

@ The ageing did not significantly
modify the p factors and so the
samples were all classified as water-
wet.

0.1 1 10 100
u factor

— aged
- Cleaned
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SUMMARY: WETTABILITY FROM DIELECTRIC

® Compare spectra measured at one saturation (Swi) before and after ageing
@ Detect the change of water inclusions
@ No index available

@ Recent development in relation to the new dielectric logging tools
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