SCA Course 2019 Numerical History Matching of SCAL data - How -

Jos Maas Consultant jgmaas.com

Numerical History Matching of SCAL data

Outline

- Workflow
- Brief discussion of mathematics of automatic history matching
- Right choice of combination of experiments
- Plug selection
- Uncertainty in final results

Interpretation-by-simulation: Workflow

		Flow exp for krw, kro production data	Multi-speed centr for Pc production data
B (a	ase analysis analytical)	JBN or just Darcy eq. assuming Pc=0	H-B and/or Forbes assuming kr's negligible
Fi	irst iteration	include Pc from multi-speed	include kr's from flow exp
0	bserve:	mismatch exp prod data	mismatch exp prod data

- Adjust krw, kro and Pc tables
- Second iteration with common set of kr's and Pc: rerun simulations, check match with exp prod data
- Adjust krw, kro and Pc tables
- Continue iterating until match exp prod data of each method within noise levels

Mathematics of automatic history matching

- A match corresponds to a minimal difference between the curves
- Differences along the curve are squared and summed into one number

Mathematics of automatic history matching

Software for automatic history matching

• AutoSCORES (PanTerra Geoconsultants)

• CYDAR (CYDAREX)

• PORLAB (D&B Ruth Enterprises)

• SENDRA (PRORES)

Numerical History Matching of SCAL data

A good match is no guarantee for a representative "true" set of relative permeabilities and capillary pressure function

• Accidentally, a local optimum can be found

• Ambiguity is large if only one experiment is analysed

Numerical History Matching of SCAL data

• Ambiguity is much reduced in practice when a combination of experiments is matched simultaneously

• Ambiguity remains for "unprobed" saturations

 Residual oil saturation is always lower than was observed in the lab

Choosing experiments to be history matched

Each experimental method has its strength and weaknesses

• Steady-State: probes mid-saturation range for k_{rw} and k_{ro}

 Unsteady-State (Welge): see SS, but limited to saturations above "shock front" saturation (possibly > 0.5)

Choosing experiments to be history matched

Each experimental method has its strength and weaknesses

- Multi-speed centrifuge: probes capillary pressure function for either forced imbibition or forced drainage
- Porous-Plate: probes capillary pressure function, full range, but very time consuming (3 to 6 months)
- Single-speed centrifuge: probes tail-end relative permeability of displaced phase

STA

stt

SYT

SYT

PANterra S

Representative data require representative core plugs

Representative plugs

- For the reservoir
 - Flow zone
 - Wettability
- For data analysis: Homogeneity
 - Local features, e.g. streaks in a plug, may dominate the flow in the laboratory. Early water breakthrough in the lab may well be translated into early water breakthrough in field forecasts
 - Assess with X-ray CT, quantitatively. Cut-off explained in SCA2019-024

Uncertainty in final results

- Uncertainty is indicated by standard deviation in final Corey parameters, and may be estimated/reported by the history matching algorithm (AutoSCORES, CYDAR, PORLAB, SENDRA)
- Only valid if proper convergence has been reached in HM
- Only valid if at least two experiments were matched simultaneously
- Hidden important uncertainties due to sample selection
 - Need at least 3 plug samples per flow unit (SCA2019-024)
 - Value Of Information may drive larger number of samples

Conclusions

- Capillary end effects in the laboratory will bring about significantly higher apparent residual oil saturation than is actually the case
- True residual oil is usually 10 to 15 saturation units lower than reported after analytical interpretation
- Mature fields and EOR projects will be affected most by wrong S_{or} estimates

Conclusions

- Heterogeneities in core plugs can and should be managed
- Mutual interference of relative permeabilities and capillary pressure can only be unraveled by numerical history matching of the experiments

Numerical History Matching is the other half of the experimental work