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Outline
1. Motivation / necessity for and advantages of a geometric state function

- 2-phase Darcy = phenomenological extension from 1-phase to 2-phase flow
- example of having incomplete state variables: ideal gas equation of state

2. Introduction: 
- introducing Minkowski functionals
- Hadwiger’s theorem, Gauss-Bonnet Theorem, Steiner’s formula

3. Description how we found it
- general background: ganglion dynamics  topological changes
- beamline data of 2013 experiment:  Hysteresis in Euler characteristic χ
- proof: (1) Hadwiger’s theorem, (2) 220000 LBM simulations

4. Software: Avizo, FIJI (BoneJ plugin), Matlab, Python, Dragonfly/DeepRocks
5. Applications, 

- hysteresis model for relative permeability
- new route to pc and relative permeability
- Digital Rock: validation of pore scale simulation techniques
- wettability: description of contact angle as deficit curvature
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Integrated Subsurface Workflow

 Prediction between wells

 Structure

 Reservoir Area

 Gross thickness

 Fluid distribution/contacts

 Net sand

 Porosity

 Saturation

 PermeabilityRelative
permeability

 Reservoir pressure

 Compressibility

 Fluid PVT

 Aquifer

 Reservoir Connectivity

 Wells: Skin

 Wells Lift

 Production Data  Statistics/ Uncertainty handling

 Capillary 
pressure



Multiphase Flow in Porous Media at Darcy Scale

Darcy’s law
µ viscosity
P pressure
K (Kabs) absolute permeability

water, oilwater

relative permeability
dx

Single-Phase Two-Phase 
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Phenomenological
extension of Darcy’s law

Viscous law (similar to pipe flow) 
can be derived from upscaling 
Stokes flow at pore scale by 
homogenization

woc ppp −=Capillary pressure



Historical Overview – Classification of the Problem
 1930s: flow problem: mass & momentum balance 

(Wykoff & Botset, Muskat & Meres, Leverett)

 1970s: thermodynamics of pore scale displacements

(Morrow, Swanson & Yuan)

 1990s: equilibrium thermodynamics problem: 

mass, momentum & energy balance (Hassanizadeh & Gray)

ganglion dynamics in 2D micromodels (Avraam & Payatakes)

 2000s: non-equilibrium thermodynamic problem – no global energy minimum

 2010s:  non-local dynamics, ganglion dynamics in 3D

Sw+Anw does not close pc hysteresis

 2018:   state variables: Sw, Anw, pc, χ

 2019:   wettability (upscaled contact angle as deficit Gaussian curvature)
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Armstrong, McClure et al. 2018
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TCAT (Gray & Miller)



Unresolved Issue: Capillary Pressure - Hysteresis

[Porter et al. 2009]

Hysteresis challenges the validity of 2-phase Darcy. But is it really hysteresis ? 
What constitutive relationships properly represent multiphase flow?

Capillary pressure function of saturation only

But: hysteresis



Consequence of Insufficient Number of State Variables

Imagine we did not know about Temperature … 

and only do P – V experiments, 

without measuring or controlling T …

Carnot cycle

• Isothermal expansion / compression

• Adiabatic expansion / compression

Wikipedia

Apparent 

hysteresis

𝑝𝑝 � 𝑉𝑉 = 𝑛𝑛𝑛𝑛𝑛𝑛

Example: ideal gas, equation of state

But with correct number of state variables, p, V, T,

there is no hysteresis (for an ideal gas). 



Saturation Sw and Interfacial Area Anw are State Variables of Pc

But that did not close 
the capillary hysteresis  
(McClure, Gray, Miller …)

m0 = volume (saturation

m1 = interfacial area

m2 = mean curvature

m3 = Gauss curvature = 2πχ

4 Minkowski Functionals

Thermodynamics: free energy
Morrow, 1970

Pressure-
volume 
work

Interfacial
Energy
term

This term was not included in the traditional theories



The Source of Capillary Pressure Hysteresis
Pore ScaleDarcy Scale

Macroscopic Darcy-scale
“saturation functions”

= f(pore scale fluid distribution)

[Stegemeier 1977]

= geometrical shape in 3D



The Source of Capillary Pressure Hysteresis
Pore ScaleDarcy Scale

Macroscopic Darcy-scale
“saturation functions”

= f(pore scale fluid distribution)

state 
variables

Hadwiger’s Theorem:
Uniquely parameterized by 4 Minkowski Functionals

= geometrical shape in 3D



The Minkowski Functionals

m0 = volume (saturation

m1 = interfacial area

m2 = mean curvature (cap. pressure)

m3 = integral curvature = 2πχ

Hadwiger’s theorem: unique characterization of 3D objects 
by 4 Minkowski functionals
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Herring et al. Advances in Water Resources 62, 47-58, 2013. 

McClure et al. Phys. Rev. Fluids, 2018

 Apply to Multiphase Flow 
Named after Hermann Minkowski, Mathematician (1864-1909)

Klaus R. Mecke, Dietrich Stoyan, Statistical Physics and Spatial Statistics. The Art of Analyzing and Modeling Spatial Structures and 
Pattern Formation, Lecture Notes in Physics, Springer, 2000. 

C. H. Arns, M. A. Knackstedt, K. Mecke, 3D Structural Analysis: Sensitivity of Minkowski Functionals. Journal of Microscopy 240, 181-196, 2010. 

H.J. Vogel, U. Weller, S. Schlüter, Quantification of Soil Structure Based on Minkowski Functions, Computers & Geosciences 36, 126-1251, 2010.



The Euler Characteristic

• Euler Characteristic measures the bulk connectivity of an object

Χ = Objects – Loops + Voids [Herring et al. 2012]

Or a collection of objects:

OIL

Χ (OIL) = - 40

?

… a cube has 6 faces

Named after Leonhard Euler, German Mathematician (1707-1783)

Gaussian curvature

1
𝑟𝑟1

+
1
𝑟𝑟2

1
𝑟𝑟1
�

1
𝑟𝑟2

Gaussian 
curvature

mean 
curvature



Leonhard Euler and the Seven Bridges of Königsberg

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River, and 
included two large islands - Kneiphof and Lomse - which were connected to each other, or to the two 
mainland portions of the city, by seven bridges. The problem was to devise a walk through the city that 
would cross each of those bridges once and only once (Source: Wikipedia)
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

2 islands 
separated by a river
7 bridges

Walk to cross each bridge only once ?

L. Euler: not possible + proof

https://en.wikipedia.org/wiki/K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Kingdom_of_Prussia
https://en.wikipedia.org/wiki/Kaliningrad
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Pregolya
https://en.wikipedia.org/wiki/Kneiphof
https://en.wikipedia.org/wiki/Oktyabrsky_Island
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


The Euler Characteristic

• Euler Characteristic measures the bulk connectivity of an object

χ = Objects – Loops + Voids

Or a collection of objects:

OIL

Χ (OIL) = - 40 1

2

3

4

5

[Herring et al. 2012]



(1) Hadwiger’s Theorem

K. Mecke, Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics
Statistical Physics and Spatial Statistics (Springer), pp 111-184, 2000.



(2) Gauss-Bonnet Theorem

χ(S) = 2 χ(S) = 2 χ(S) = 2

The curvature is either on the surface (Gaussian Curvature) or at the edges (Geodesic Curvature)

Explains the relationship between Gaussian curvature and topology.

𝑘𝑘𝑓𝑓 =
1
𝑟𝑟1
�

1
𝑟𝑟2

Gaussian curvature

𝑝𝑝𝑐𝑐(𝑆𝑆𝑤𝑤) = 𝛾𝛾 �
1
𝑟𝑟1

+
1
𝑟𝑟2

Mean curvature



(3) Steiner’s Formula
Provides a means to identify relationships between the Minkowski functionals

Explains how the volume (dependent) of an object changes 
depending on the objects morphology (independent) 

Volume

𝑉𝑉 Ω𝑖𝑖⨁𝛿𝛿𝛿𝛿 − 𝑉𝑉 Ω𝑖𝑖 =
4
3
𝜋𝜋 𝑟𝑟 + 𝛿𝛿𝑟𝑟 2 −

4
3
𝜋𝜋 𝑟𝑟 2 = 𝐴𝐴𝑖𝑖𝛿𝛿𝑟𝑟 + 𝐻𝐻𝑖𝑖 𝛿𝛿𝑟𝑟 2 +

4
3
𝜋𝜋𝜒𝜒𝑖𝑖 𝛿𝛿𝑟𝑟 3

Example: sphere … 

Mean width



Background: Cluster Dynamics in SCAL Experiments
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ganglion dynamics

[Avraam & Payatakes, 1995]dx
dpKkv i
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Rücker et al. GRL, 2015
GRL, 2019

Armstrong et al. WRR 2018

SCA2015-007

Imaged by fast µCT



Cluster Dynamics Introduces Topological Changes
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Rücker et al. GRL 2015Introduces Topological Changes



Cluster Dynamics Introduces Topological Changes
1 mm
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Increase in χ  Loss of connectivity
χ=0 percolation threshold

Rücker et al. GRL, 2015

Snap-off 
 disconnection
 #objects increases 
 χ increases

Coalescence
 connection
 #objects decreases 
 χ decreases

χ = Objects – Loops + Voids

Here: #snap-off > #coalescence 
 net χ increase



The Discovery of the 4th State Variable
Oil-Saturation [%]
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χ ∼ (S0)2

Hysteresis
loop

Schlüter et al. WRR, 2016

bounding curve 
= drainage

imbibition

fw= 0.8 Q=3µl/min

fw= 0.8 Q=30µl/min

fw= 0.8 Q=300µl/min

fw= 0.5 Q=3µl/min

fw= 0.5 Q=30µl/min

fw= 0.5 Q=300µl/min

fw= 0.2 Q=3µl/min

fw= 0.2 Q=30µl/min

fw= 0.2 Q=300µl/min

Drainage = 
maintaining connectivity

(avoid forming loops)

Imbibition = 
Snap-off  formation of 

clusters and loops

Exponent depends
on rock  type

Rücker et al. 2015



Proof by Direct Numerical Simulation

McClure et al. Phys. Rev. Fluids, 2018



Proof by Direct Numerical Simulation
McClure et al. Phys. Rev. Fluids, 2018
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Pc(Sw) Pc(Sw, Anw) Pc(Sw, Anw, χnw) Pc(Sw) Pc(Sw, Anw) Pc(Sw, Anw, χnw)

260000 fluid configurations simulated

Saturation and Saturation + Interfacial Area are not sufficient to fully parameterize hysteresis (error > 10%)
 Saturation + Interfacial Area + Euler Characteristic: error < 10%  full set of state variables



Upscaling from Pore to the Darcy Scale
“Darcy scale”“Pore scale” “Cluster scale”

Single pores 
continuum oil & water phases
Single interfaces

Non-wetting phase clusters, 
Cooperative dynamics

Continuum mechanics:
porosity, permeability, saturation
phenomenological description

dx
dpKkv i
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 Changing topology

GRL 2015

State variables:
Minkowski functionals

coalescence



How to Compute - Software Packages

0.  Image processing
1. Avizo
2. ImageJ and FIJI: BoneJ plugin
3. Python – scikit-image (currently only 2D)
4. Matlab
5. Quantim (https://www.ufz.de/export/data/2/94413_quantim4_ref_manual.pdf)
6. Boundary and connectivity issues
7. Dragonfly/DeepRocks – compute χ on network

https://www.ufz.de/export/data/2/94413_quantim4_ref_manual.pdf


Image Processing
µCT image Segmented Oil clusters

segmentation

16 bit grey level
(potentially filter)

Oil Phase
select phase object analysis

Segmented image
Blue = rock
Red = oil
Green = gas

For each cluster computeFor each phase compute

• Volume
• Interfacial area
• Mean curvature
• Euler characteristic



Avizo: Mean Curvature
segmentation

Label analysis

• Volume
• Area
• Euler char.

Generate surface
(spline interpolation)

• Mean curvature
• Gaussian curvature



• Surface property calculation
• Curvature
• Distance
• Roughness
• Thickness

Avizo : Surface meshes

[courtesy of ThermoFisher]

SCA2012-55



Avizo : Object Analysis
• Analysis

• Shape factor

• Equivalent diameter

• Volume, area

• Euler

• Orientation

• Roundness

• Sphericity

• Rugosity

• Crofton

• Classification

Grain separation on a 40GB Sandstone 5µm

[courtesy of ThermoFisher]



Avizo: Euler Characteristic Volume Area BarX Bary Barz Euler
Sphere 4169 1262.52 50 50 50 1

2spheres 4169 1262.52 50 50 50 1
4169 1262.52 150 50 50 1

sum 4170 1263.52 2

hollow sphere 72982 16953.9 50 50 50 2

ring 110284 27631.2 50 50 50 0

doughnut 203899 49396.3 99.9872 50 50 -1

Euler Characteristic χ = 
Objects – Loops (+ Inclusions)

χ=1

χ=2

χ=0

χ=-1

χ=-4

Herring, AWR 2013 



ImageJ and FIJI: BoneJ plugin  (OpenSource)

ImageJ - https://imagej.nih.gov/ij/
FIJI - https://fiji.sc/
BoneJ - http://bonej.org/

https://imagej.nih.gov/ij/
https://fiji.sc/
http://bonej.org/


ImageJ and FIJI: BoneJ plugin  (OpenSource)

Euler Characteristic χ = 
Objects – Loops (+ Inclusions)

χ=1

χ=2

χ=0

χ=-1

χ=-4

Herring, AWR 2013 



Python

Euler Characteristic χ = 
Objects – Loops (+ Inclusions)

χ=1

χ=2

χ=0

χ=-1

χ=-4

Herring, AWR 2013 

https://scikit-image.org/docs/dev/api/skimage.measure.html

Many functions unfortunately currently only in 2D !

https://scikit-image.org/docs/dev/api/skimage.measure.html


MATLAB

https://github.com/mattools/matImage

for w_idx = [900] % ROI size

w_surface = [];

w_labels = [];

i_loc = ((mask_x - w_idx)/2)+1;

j_loc = ((mask_y - w_idx)/2)+1;

k_loc = ((mask_z - w_idx)/2)+1;

roi = FinalImage(i_loc:i_loc+w_idx-1, j_loc:j_loc+w_idx-1,

k_loc:k_loc+w_idx-1);

[Euler_roi, Euler_labels]= imEuler3d(roi);

% Implements Euler number codes

w_Euler = vertcat(w_Euler, Euler_roi);

w_labels = vertcat(w_labels, Euler_labels);

file_name = [num2str(w_idx), ‘Filename_900.mat'];

save(file_name, ‘w_Euler', 'w_labels')

end

Legland, D.; Kiêu, K. & Devaux, M.-F. Computation of 
Minkowski measures on 2D and 3D binary images. 
Image Anal. Stereol., 2007, 26, 83-92

https://github.com/mattools/matImage


Boundary and Connectivity Issues
ROI 
size

Euler3D calculated by 
Avizo

Euler3D calculated with 
MATLAB codes 

200 -5.07E+02 -5.62E+02
300 -2.70E+03 -2.69E+03
400 -6.76E+03 -6.80E+03

Include

Exclude

Include All

Euler = 2

Euler = 3

Boundary Issues

Pixel Connectivity

Do these two objects connect?

YES  Euler = 1
No  Euler = 2



Measurements on 
Segmented Voxels

Color and Sort by measurement
● Volume
● Surface area
● Aspect Ratio
● Phi
● Theta
● Position (x,y,z)
● Intensity (mean, min, max, stdev)

Grain separation and labeling by Deep Watershed

Digital Rock Imaging Platform
Powered by Deep Learning

Whole Core
Medical CT, Core photography

Plugs and Cuttings
Micro-CT, Nano-CT, FIB-SEM

Thin Section
LM, SEM, TEM, CL, Mineralogy

Courtesy of 
TheObjects



Measurements Directly on Surface Meshes and Graphs

Curvature Mesh Thickness Mesh

Mesh operations
● Smoothing
● Decimation
● Thickness
● Mean Curvature
● Gaussian Curvature

Pore network
● Nodes scaled by pore body 

radius
● Nodes colored by connectivity 

index
● Edges colored by edge length
● 𝝌𝝌= -212 (Euler characteristic)

Courtesy of TheObjects



Applications

1. Digital Rock: Validation of pore scale simulators: relative permeability
2. new route to relative permeability
3. Phase connectivity inferred from resistivity measurements
4. Phase connectivity in critical gas saturation
5. Hysteresis models for Darcy-scale flow
6. Wettability: Description of contact angle as deficit curvature
7. Wettability: bi-continuous interfaces in intermediate/mixed-wet rock
8. Petrology mineral analysis for interpreting relative permeability
9. Permeability in fracture networks



Application: Validation of Pore Scale Simulation

McClure et al, PRE, 2016

LBM fractional flow simulation: match with exp. data 

Alpak et al., ADWR 2018

Free-Energy LBM correctly predicts connectivity !

Percolation threshold



Application: Validation of Pore Scale Simulation
Model: quasi-static Pore Network Model (Ruspini et al. 2018)
Rock: Gildehauser sandstone (similar to Bentheimer)
Imbibition

saturation
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Bultreys et al. under review



Application: new route to relative permeability

(Euler characteristic)

Sensitivity

Armstrong et al. 
TIPM 2017

Non-wetting phase relative permeability has 

high sensitivity with Euler characteristic

Non-wetting phase relative permeability is simple

Power law function of Euler characteristic

Scholz et al. Permeability of Porous Materials Determined from the Euler Characteristic, Physical Review Letters 109, 264504, 2012.
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Bi-Continuous Interfaces

Lin et al. Phys. Rev. E, 2019

 Mean curvature ~ 0

 Gaussian curvature < 0  

 bi-continuous interfaces with high connectivity



Resistivity Index and Topology
Percolation Theory:

[Liu et al. 2018]

Percolation parameter = Saturation Percolation parameter = Topology

Models comparing 
percolation parameters 
for various wetting 
conditions.

Euler characteristic 
inferred from RI



Phase Connectivity in Critical Gas Saturation [Berg et al. SCA 2019]
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χ = 0  percolation threshold

Euler Characteristic χ = 
Objects – Loops (+ Inclusions)

χ=1
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 See SCA021 on Wednesday, 11:30






Application: Relative Permeability Hysteresis Modelling

Advantage of state-variable description: path-independence

1. Can express any parameter, e.g. kr
as total differential of state variables

2. Can choose different paths to measure kr
- e.g. branch 1: constant saturation  (steady-state, constant fractional flow Fw)

branch 2: constant pc (porous plate)

State variable 1: saturation
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Constant pc

SPE-182655 (Penn State group)



Application: Relative Permeability Hysteresis Modelling

RESTRICTED

Relative permeability as an

Equation of State (EOS) 

SPE-182655 (R. T. Johns)



Application: Wettability 
Pore scale Darcy-SCAL scale

Amott Wettability Index
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Effective contact angle ≠ intrinsic contact angle
(Intrinsic contact angle ~ surface energy)

Andrew et al. 2014

Prodanovic, M., Lindquist, W.B., Seright, S.R.: Residual fluid blobs and contact angle measurements from X-ray images of fluid displacement. In: XVI International 
Conference on Computational Methods in Water Resources, Copenhagen, Denmark (2006)



Contact Angle from Deficit Curvature

Gauss-Bonnet Theorem

Deficit Curvature, kd

Total geodesic curvature 
along the contact line

Sessile Drop

3D Oil Cluster

𝜽𝜽𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 =
𝜿𝜿𝒅𝒅
𝟒𝟒𝑵𝑵𝒎𝒎

Macroscopic
contact angle



Contact Angle = Deficit Curvature Armstrong et al. under review

Gauss Bonnet Theorem

For each region:

Fluid-Fluid

Fluid-solid

Gaussian 
curvature

Geodesic 
curvature



Contact Angle = Deficit Curvature Armstrong et al. under review

with

Macroscopic contact angle

For Nc contacts with solid

Number 
of contacts



Contact Angle = Deficit Curvature Armstrong et al. under review

Macroscopic contact angle

For 1 sessile droplet:



Contact Angle = Deficit Curvature Armstrong et al. under review

Macroscopic contact angle

For 1 sessile droplet:

Intrinsic contact angle
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Validation: Advancing and Receding Contact angle

Armstrong et al. under review

Morrow, JCPT 1975

Advancing contact
angle

Receding contact
angle



Predicting Contact Angle Armstrong et al. under review
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 SCA009 (Tuesday, 9:30)

𝜽𝜽𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 =
𝜿𝜿𝒅𝒅
𝟒𝟒𝑵𝑵𝒎𝒎



Minerology, Wettability and Topology

QEMSCAN DATA, Pore-Scale Minerology

Uniform-wetting 
more connected

Mixed-Wet more 
disconnected clusters

connected

clusters

Euler characteristic quantifies impact of wettability on
the connectivity of the oil phase



Fractured Porous Media
Original works of Adler (Fractured Porous Media)

PRL, Scholz et al. 2012

Dimensionless Density, ρ’
A measure of the connectivity of the fracture network

Fracture Network
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Number of Loops, Β1 = [(ρ′/2)−1]ρ ′

2D Porous Structures

[LOOPS + OBJECTS] / OBJECTS

Single Permeability Curve
Collapse on single curve

Fracture density x volume Excluded volume



Conclusions
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2-Phase Flow in Porous Media
Darcy’s lawwater
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So far this has been sufficient, but

When trying to augment SCAL by Digital Rock, it is important to 
• correctly classify the problem

And it becomes inevitable to understand what relative permeability actually is, i.e. face the
• Upscaling from Pore to Darcy Scale challenge
More conceptually. 



The State Variables of Capillarity

m0 = volume (saturation

m1 = interfacial area

m2 = mean curvature (cap. pressure)

m3 = integral curvature = 2πχ

Hadwiger’s theorem: unique characterization of 3D objects 
by 4 Minkowski functionals
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McClure et al. Phys. Rev. Fluids, 2018
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Capillary Pressure vs. Saturation

MF in terms of macro-scale parametersCapillary Pressure

• Pc-Sw is essentially a geometric 
definition (or statement) 

• Saturation does not uniquely 
define the geometrical state

• Steiners formula suggests that all 
four MF are required for a unique
definition



Cluster Dynamics Introduces Topological Changes
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Characterization of Flow Regimes: Phase Diagrams … 
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(at the time we did not know yet that we should have used Anw)



Clusters: Growing and Coalescence  χ decreases
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Clusters: Break-up by Snap-off  χ increases
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Characterization of Flow Regimes: Phase Diagrams … 
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Application: Validation of Pore Scale Simulation
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Can we obtain imbibition relative permeability from a quasi-static approach ?
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Influence of Wettability on Topology

Tested Two Different Wettabilities

Water Wet: I = 0.72
Mixed-Wet = -0.11
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